Resit - Group Theory (WIGT-07)

Thursday April 12, 2018, 9:00h-12.00h
University of Groningen

Instructions

1. Write your name and student number on every page you hand in.
2. All answers need to be accompanied with an explanation or a calculation.
3. Your grade for this exam is $(P+10) / 10$, where P is the number of points for this exam.

Problem 1 (15 points)

a) Give the definition of the order of an element of a group.

Solution: Let G be a group and $x \in G$. Then the order of x is the smallest positive integer n such that x^{n} is the unit element of G, if such an integer exists. (3 points) Otherwise it is defined to be ∞. (2 points)
b) Write down Cayley's theorem.

Solution: Every group G is isomorphic to a subgroup of S_{G}. (5 points) If $\# G=n$ is finite, then G is isomorphic to a subgroup of S_{n}.
c) Let G be a finite group and let p be a prime dividing $\# G$. Give the definition of a Sylow- p group in G.
Solution: Let $\# G=p^{n} \cdot m$, where $n \geq 1$ and $\operatorname{gcd}(p, m)=1$. Then a Sylow p-group in G is a subgroup of G of order p^{n}. (5 points)

Problem 2 (10 points)

What is the number of subgroups of S_{5} of order 5 ?
Solution: We have $\# S_{5}=120=5 \cdot 24$. So the number of subgroups of S_{5} of order 5 is the number N_{5} of 5 -Sylow groups in S_{5}. By Sylow's theorem, $N_{5} \equiv 1(\bmod 5)$ and $N_{5} \mid 24$, so $N_{5} \in\{1,6\}$. (3 points) However, $N_{5}=1$ is impossible, because every 5 -cycle has order 5 , so it generates a subgroup of order 5 , and there are too many (namely 24) 5 -cycles to all lie in the same group. (7 points) Explicitly, (12354) is not in the group generated by $\sigma=(12345)$, since the only element of the latter sending 1 to 2 is σ. Hence $N_{5}=6$.

Alternatively, we can show this directly without appealing to Sylow's theorem, by noting that any subgroup of order 5 must be generated by a 5 -cycle (5 points) and using that each of them contains exactly 45 -cycles, so there are $24 / 4=6$ of them. (5 points)

Problem 3 (20 points)

Let G be a group and let H be a subgroup of G. Define

$$
N:=\bigcap_{a \in G} a H a^{-1}
$$

and

$$
X:=\{a H: a \in G\} .
$$

a) Show that $N \subseteq H$. (1 point)

Solution: If $x \in N$, then $x \in e H e^{-1}=H$. (1 point)
b) Show that N is a subgroup of G. (4 points)

Solution: For $a \in G$, we have $e=a e a^{-1} \subseteq a H a^{-1}$. (1 point) Now let $x, x^{\prime} \in N$ and let $h, h^{\prime} \in H$ such that $x=a h a^{-1}$ and $x^{\prime}=a h^{\prime} a^{-1}$. Then $x x^{\prime}=a h a^{-1} a h^{\prime} a^{-1}=a h h^{\prime} a^{-1} \subseteq$ $a H a^{-1}$, (1 point) since H is a subgroup. For the same reason $x^{-1}=a h a^{-1} \subseteq a H a^{-1}$. (1 point) Hence N is a subgroup of G by the subgroup criterion. (1 point)
c) Show that N is a normal subgroup of G. (5 points)

Solution: We'll show $b N b^{-1} \subseteq N$ for all $b \in G$, which is equivalent to N being normal. (1 point) So let $x \in N$ and $y=b x b^{-1}$. Let $a \in G$, then we need to show that $y=a h a^{-1}$ for some $h \in H$. As $x \in N$, we can find $h \in H$ such that $x=\left(b^{-1} a\right) h\left(b^{-1} a\right)^{-1}$ (3 points). But then $y=b\left(b^{-1} a h a^{-1} b\right) b^{-1}=a h a^{-1}$ as desired (1 point).
d) For $x \in G$, let $\varphi_{x}: X \rightarrow X$ denote the map $a H \mapsto x a H$. Show that φ_{x} is a bijection for all $x \in G$, and that the map $\Phi: G \rightarrow S_{X}$ given by $x \mapsto \varphi_{x}$ is a homomorphism, where S_{X} is the group of bijections on X. (3 points)
Solution: It's obvious that $\varphi_{x y}=\varphi_{x} \circ \varphi_{y}$ for all $x, y \in G$. (1 point) In particular, this shows that $\varphi_{x^{-1}}$ is an inverse function of φ_{x}, so φ_{x} is a bijection. (1 point) The fact that Φ is a homomorphism has already been proved (1 point).
e) Suppose that the index $[G: H]$ is finite. Use d) to prove that $[G: N]$ divides $[G: H]$!. (7 points)

Solution: Since $\# X=[G: H]$ by definition, we find by the first isomorphism theorem (1 point) and Lagrange's theorem (1 point)

$$
[G: \operatorname{ker}(\Phi)]=\#(G / \operatorname{ker}(\Phi))=\# \Phi(G) \mid \# S_{X}=[G: H]!
$$

(2 points) To show the result, it therefore suffices to prove that $\operatorname{ker}(\Phi) \subseteq N$ (in fact we have equality) (1 point). So let $x \in \operatorname{ker}(\Phi)$ and $a \in G$. Then $x a H=a H$, so there are $h, h^{\prime} \in H$ such that $x a h=a h^{\prime}$. (1 point) Therefore $x=a\left(h^{\prime} h^{-1}\right) a^{-1} \in a H a^{-1}$, so $x \in N$ (1 point).

Problem 4 (10 points)

Show that there is no simple group of order 351.
Solution: Let G be a group of order $351=3^{3} \cdot 13$. (1 point) For a prime $p \mid 351$, let N_{p} be the number of Sylow- p groups in G. If we find $N_{p}=1$ for some p, then we know that the unique Sylow p-group in G is normal and, since it has order p, it is not G or $\{e\}$, so G is not simple. (2 points) By Sylow's theorem $N_{13} \equiv 1(\bmod 1) 3$ and $N_{13} \mid 27$, so $N_{13} \in\{1,27\}$. Suppose $N_{13}=27$; it suffices to show that $N_{3}=1$. (2 points) If H, H^{\prime} are distinct 13-Sylow groups in G, then their intersection consists only of the unit element e (for instance, since their intersection is a subgroup of H, so by Lagrange it has order dividing 13). Hence there are $27 \cdot(13-1)$ elements of order 13 in G, as every element $\neq e$ of a 13-Sylow group has order 13. (3 points) This implies $N_{3}=1$, because $N_{3} \geq 1$ and every Sylow-3 group consists of precisely 27 elements, none of which are of order 13 . (2 points)

Problem 5 (15 points)

Let \mathbb{T} denote the set of complex numbers of absolute value 1 .
a) Show that \mathbb{T} is an abelian group under multiplication.

Solution: We show that \mathbb{T} is a subgroup of the multiplicative group $\mathbb{C}^{\times}=\mathbb{C} \backslash\{0\}$ (1 point) (which is abelian, so that \mathbb{T} is automatically abelian as well (1 point)). Clearly $1 \in \mathbb{T}$ and, since $|z w|=|z||w|$ for all $z, w \in \mathbb{C}$, we have $z w \in \mathbb{T}$ and $z^{-1} \in \mathbb{T}$ for $z, w \in \mathbb{T}$. (3 points) Alternatively, one can use that the absolute value defines a homomorphism $\mathbb{C}^{\times} \rightarrow \mathbb{R}_{>0}$ with kernel \mathbb{T}.
b) Show that \mathbb{T} is isomorphic to $\mathbb{R} / 2 \pi \mathbb{Z}$.

Solution: The map $\theta \mapsto \exp (i \theta)$ (2 points) defines a homomorphism from \mathbb{R} to \mathbb{T}, since $\exp \left(i\left(\theta+\theta^{\prime}\right)\right)=\exp (i \theta) \exp \left(i \theta^{\prime}\right)$ by properties of the exponential map (2 points). The map is clearly surjective (for given $z \in \mathbb{T}$, take $\theta \in[0,2 \pi$) to be the angle of z) (2 points), and the kernel is equal to $2 \pi \mathbb{Z}$ (1 point), so the result follows from the first isomorphism theorem (3 points).

Problem 6 (20 points)

Let

$$
H:=\left\{(a, b, c) \in \mathbb{Z}^{3}: a+2 b+4 c \equiv 0 \quad(\bmod 8)\right\}
$$

a) Show that H is a subgroup of \mathbb{Z}^{3}.

Solution: One shows that $(a, b, c) \mapsto a+2 b+4 c(\bmod 8)$ defines a homomorphism $\mathbb{Z}^{3} \rightarrow$ $\mathbb{Z} / 8 \mathbb{Z}$, whose kernel is H. (3 points)
b) Compute a basis of H.

Solution: Let $\pi_{i}: \mathbb{Z}^{3} \rightarrow \mathbb{Z}$ be the projection on the i th coordinate. We have $\pi_{3}(H)=\mathbb{Z}$ since $(2,1,1) \in H$ and hence $1 \in \pi_{3}(H)$; a subgroup of \mathbb{Z} containing 1 equals \mathbb{Z}. (2 points) By the lectures, $(2,1,1)$ together with a basis for $\operatorname{ker}\left(\pi_{3}\right) \cap H$ yields a basis of H. (2 points) By definition

$$
\operatorname{ker}\left(\pi_{3}\right) \cap H=\{(a, b, 0) \mid a+2 b \equiv 0 \bmod 8\}
$$

We find $\pi_{2}\left(\operatorname{ker}\left(\pi_{3}\right) \cap H\right)=\mathbb{Z}$, because $(6,1,0) \in \operatorname{ker}\left(\pi_{3}\right) \cap H$ and $\pi_{2}(6,1,0)=1$. (2 points) So a basis for $\operatorname{ker}\left(\pi_{3}\right) \cap H$ consists of $(6,1,0)$ together with a basis for $\operatorname{ker}\left(\pi_{2}\right) \cap \operatorname{ker}\left(\pi_{3}\right) \cap H$. (2 points) We have

$$
\operatorname{ker}\left(\pi_{2}\right) \cap \operatorname{ker}\left(\pi_{3}\right) \cap H=\{(a, 0,0) \mid a \equiv 0 \bmod 8\}=\mathbb{Z}(8,0,0),
$$

(2 points) hence a basis of H is given by

$$
((8,0,0),(6,1,0),(2,1,1)
$$

(2 points)
c) Find the number of elements of \mathbb{Z}^{3} / H.

Solution: Let A denote the matrix with columns equal to the basis of H determined in b). Then either the order of \mathbb{Z}^{3} / H is equal to the absolute value of the determinant of A or \mathbb{Z}^{3} / H is infinite. (4 points) In this case the order is therefore 8 (1 point). Alternatively, this follows from a) using the first isomorphism theorem,

End of test (90 points)

