
Resit — Group Theory (WIGT-07)

Thursday April 12, 2018, 9:00h–12.00h

University of Groningen

Instructions

1. Write your name and student number on every page you hand in.

2. All answers need to be accompanied with an explanation or a calculation.

3. Your grade for this exam is (P + 10)/10, where P is the number of points for this exam.

Problem 1 (15 points)

a) Give the definition of the order of an element of a group.

Solution: Let G be a group and x ∈ G. Then the order of x is the smallest positive integer
n such that xn is the unit element of G, if such an integer exists. (3 points) Otherwise it is
defined to be ∞. (2 points)

b) Write down Cayley’s theorem.

Solution: Every group G is isomorphic to a subgroup of SG. (5 points) If #G = n is finite,
then G is isomorphic to a subgroup of Sn.

c) Let G be a finite group and let p be a prime dividing #G. Give the definition of a Sylow-p
group in G.

Solution: Let #G = pn ·m, where n ≥ 1 and gcd(p,m) = 1. Then a Sylow p-group in G is
a subgroup of G of order pn. (5 points)

Problem 2 (10 points)

What is the number of subgroups of S5 of order 5?
Solution: We have #S5 = 120 = 5 · 24. So the number of subgroups of S5 of order 5 is

the number N5 of 5-Sylow groups in S5. By Sylow’s theorem, N5 ≡ 1 (mod 5) and N5 | 24, so
N5 ∈ {1, 6}. (3 points) However, N5 = 1 is impossible, because every 5-cycle has order 5, so it
generates a subgroup of order 5, and there are too many (namely 24) 5-cycles to all lie in the
same group. (7 points) Explicitly, (1 2 3 5 4) is not in the group generated by σ = (1 2 3 4 5),
since the only element of the latter sending 1 to 2 is σ. Hence N5 = 6.

Alternatively, we can show this directly without appealing to Sylow’s theorem, by noting
that any subgroup of order 5 must be generated by a 5-cycle (5 points) and using that each of
them contains exactly 4 5-cycles, so there are 24/4 = 6 of them. (5 points)
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Problem 3 (20 points)

Let G be a group and let H be a subgroup of G. Define

N :=
⋂
a∈G

aHa−1

and
X := {aH : a ∈ G} .

a) Show that N ⊆ H. (1 point)

Solution: If x ∈ N , then x ∈ eHe−1 = H. (1 point)

b) Show that N is a subgroup of G. (4 points)

Solution: For a ∈ G, we have e = aea−1 ⊆ aHa−1. (1 point) Now let x, x′ ∈ N and let
h, h′ ∈ H such that x = aha−1 and x′ = ah′a−1. Then xx′ = aha−1ah′a−1 = ahh′a−1 ⊆
aHa−1, (1 point) since H is a subgroup. For the same reason x−1 = aha−1 ⊆ aHa−1. (1
point) Hence N is a subgroup of G by the subgroup criterion. (1 point)

c) Show that N is a normal subgroup of G. (5 points)

Solution: We’ll show bNb−1 ⊆ N for all b ∈ G, which is equivalent to N being normal. (1
point) So let x ∈ N and y = bxb−1. Let a ∈ G, then we need to show that y = aha−1 for
some h ∈ H. As x ∈ N , we can find h ∈ H such that x = (b−1a)h(b−1a)−1 (3 points). But
then y = b(b−1aha−1b)b−1 = aha−1 as desired (1 point).

d) For x ∈ G, let ϕx : X → X denote the map aH 7→ xaH. Show that ϕx is a bijection for all
x ∈ G, and that the map Φ : G → SX given by x 7→ ϕx is a homomorphism, where SX is
the group of bijections on X. (3 points)

Solution: It’s obvious that ϕxy = ϕx ◦ϕy for all x, y ∈ G. (1 point) In particular, this shows
that ϕx−1 is an inverse function of ϕx, so ϕx is a bijection. (1 point) The fact that Φ is a
homomorphism has already been proved (1 point).

e) Suppose that the index [G : H] is finite. Use d) to prove that [G : N ] divides [G : H]!. (7
points)

Solution: Since #X = [G : H] by definition, we find by the first isomorphism theorem (1
point) and Lagrange’s theorem (1 point)

[G : ker(Φ)] = #(G/ ker(Φ)) = #Φ(G) | #SX = [G : H]!

(2 points) To show the result, it therefore suffices to prove that ker(Φ) ⊆ N (in fact we have
equality) (1 point). So let x ∈ ker(Φ) and a ∈ G. Then xaH = aH, so there are h, h′ ∈ H
such that xah = ah′. (1 point) Therefore x = a(h′h−1)a−1 ∈ aHa−1, so x ∈ N (1 point).
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Problem 4 (10 points)

Show that there is no simple group of order 351.
Solution: Let G be a group of order 351 = 33 · 13. (1 point) For a prime p | 351, let Np be

the number of Sylow-p groups in G. If we find Np = 1 for some p, then we know that the unique
Sylow p-group in G is normal and, since it has order p, it is not G or {e}, so G is not simple.
(2 points) By Sylow’s theorem N13 ≡ 1 (mod 1)3 and N13 | 27, so N13 ∈ {1, 27}. Suppose
N13 = 27; it suffices to show that N3 = 1. (2 points) If H,H ′ are distinct 13-Sylow groups in G,
then their intersection consists only of the unit element e (for instance, since their intersection
is a subgroup of H, so by Lagrange it has order dividing 13). Hence there are 27 · (13 − 1)
elements of order 13 in G, as every element 6= e of a 13-Sylow group has order 13. (3 points)
This implies N3 = 1, because N3 ≥ 1 and every Sylow-3 group consists of precisely 27 elements,
none of which are of order 13. (2 points)

Problem 5 (15 points)

Let T denote the set of complex numbers of absolute value 1.

a) Show that T is an abelian group under multiplication.

Solution: We show that T is a subgroup of the multiplicative group C× = C \ {0} (1 point)
(which is abelian, so that T is automatically abelian as well (1 point)). Clearly 1 ∈ T and,
since |zw| = |z||w| for all z, w ∈ C, we have zw ∈ T and z−1 ∈ T for z, w ∈ T. (3 points)
Alternatively, one can use that the absolute value defines a homomorphism C× → R>0 with
kernel T.

b) Show that T is isomorphic to R/2πZ.

Solution: The map θ 7→ exp(iθ) (2 points) defines a homomorphism from R to T, since
exp(i(θ + θ′)) = exp(iθ) exp(iθ′) by properties of the exponential map (2 points). The map
is clearly surjective (for given z ∈ T, take θ ∈ [0, 2π) to be the angle of z) (2 points), and the
kernel is equal to 2πZ (1 point), so the result follows from the first isomorphism theorem (3
points).

Problem 6 (20 points)

Let
H := {(a, b, c) ∈ Z3 : a+ 2b+ 4c ≡ 0 (mod 8)}

a) Show that H is a subgroup of Z3.

Solution: One shows that (a, b, c) 7→ a + 2b + 4c (mod 8) defines a homomorphism Z3 →
Z/8Z, whose kernel is H. (3 points)

b) Compute a basis of H.

Solution: Let πi : Z3 → Z be the projection on the ith coordinate. We have π3(H) = Z
since (2, 1, 1) ∈ H and hence 1 ∈ π3(H); a subgroup of Z containing 1 equals Z. (2 points)
By the lectures, (2, 1, 1) together with a basis for ker(π3)∩H yields a basis of H. (2 points)
By definition

ker(π3) ∩H = {(a, b, 0) | a+ 2b ≡ 0 mod 8} .
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We find π2 (ker(π3) ∩H) = Z, because (6, 1, 0) ∈ ker(π3)∩H and π2(6, 1, 0) = 1. (2 points)
So a basis for ker(π3)∩H consists of (6, 1, 0) together with a basis for ker(π2)∩ker(π3)∩H.
(2 points) We have

ker(π2) ∩ ker(π3) ∩H = {(a, 0, 0) | a ≡ 0 mod 8} = Z(8, 0, 0),

(2 points) hence a basis of H is given by

((8, 0, 0), (6, 1, 0), (2, 1, 1).

(2 points)

c) Find the number of elements of Z3/H.

Solution: Let A denote the matrix with columns equal to the basis of H determined in b).
Then either the order of Z3/H is equal to the absolute value of the determinant of A or
Z3/H is infinite. (4 points) In this case the order is therefore 8 (1 point). Alternatively, this
follows from a) using the first isomorphism theorem,

End of test (90 points)
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